
Generating and Evaluating Choices for Fixing Inconsistencies
in UML Design Models

Alexander Egyed 1,2, Emmanuel Letier 2, and Anthony Finkelstein 2

 Johannes Kepler University 1 University College London 2
 Institute for Systems Eng. and Automation Department of Computer Science
 Linz, Austria London, UK
 ae@sea.uni-linz.ac.at {e.letier, a.finkelstein}@cs.ucl.ac.uk

Abstract
Our objective is to provide automated support for
assisting designers in fixing inconsistencies in UML
models. We have previously developed techniques for
efficiently detecting inconsistencies in such models and
identifying where changes need to occur in order to fix
problems detected by these means. This paper extends
previous work by describing a technique for
automatically generating a set of concrete changes for
fixing inconsistencies and providing information about
the impact of each change on all consistency rules. The
approach is integrated with the design tool IBM
Rational RoseTM. We demonstrate the computational
scalability and usability of the approach through the
empirical evaluation of 39 UML models of sizes up to
120,000 elements.

1. Introduction

Integrated development environments (IDE)

provide rich automated features for detecting and
fixing errors at the code level. For example, Eclipse
has support for so-called "Quick Fixes" that generate
potential resolutions for resolving Java errors.
Programmers find these resolution mechanisms
extremely useful. Some design tools have started to
develop similar features by presenting choices for
fixing design problems. Figure 1 shows a capability of
the UML tool IBM Rational Rose™, which suggests
the set of choices stream(), wait(), and connect() to fix
the incorrect message name play in a sequence
diagram. However, the support currently provided at
the model level is very limited.

For modeling languages, such as UML [1],
constraints are typically defined in form of consistency
rules [2]. Automated resolution mechanisms then

require tool developers to manually implement
separate fixing rules for every location where a
violation of a consistency rule could occur. When the
number of consistency rules increases, this represents a
significant effort. Furthermore, developers of such
resolution mechanisms must take care that their fixes
are correct in the sense that they resolve the
inconsistencies without introducing new ones. For
multi-paradigm modeling languages, such as UML,
this is extremely difficult to achieve because of the
numerous interactions among consistency rules. An
additional problem when developing tool support for
resolution mechanisms in UML models is that different
development teams often use different consistency
rules and different set of consistency rules may be used
at different stages of the project lifecycle. This make a
‘hard coded’ resolution mechanism defined for a fixed
set of consistency rules almost useless.

This paper suggests an alternative approach that
eliminates the need for creating fixing rules altogether.
The approach first generates a set of values a model

Figure 1. IBM Rational Rose™ Suggesting a Fix

for an incorrect Message Name

element may take. The values generated depend on the
model element expected type and on the set of values
of that type already present in the model. This set may
contain valid and invalid choices with respect to the
consistency rules. The approach then prunes the set of
values trough incremental consistency checking. The
result is a set of choices on how to fix an inconsistency
that is guaranteed not to violate any known consistency
rule (i.e., impact of a change [3]). The critical step of
our technique is to discover and re-evaluate the correct
and complete set of consistency rules that are affected
by a fix. This paper also presents an empirical
scalability analysis showing that this approach
maintains instantaneous response time to user queries
even when the size of the models increases.

For modellers (the end users of modeling tools),
our approach is fully automated. Manual overhead is
required for the tool builders responsible for
implementing the value generation functions.
However, even tool builders save effort with respect to
the alternative approach of developing resolution
functions that are dependent on the violated
consistency rules because the development of the
choice generators is much simpler than that of
resolution rules. An important additional benefit of our
approach is that the value generation functions do not
need to be changed when consistency rules change (an
extremely frequent situation with UML modeling). Our
generate and prune approach also has the advantage
that it provides rich feedback to the designer by
presenting not only valid choices satisfying all
consistency rules, but also why invalid ones could not.
We believe this feature is particularly useful because
fixing inconsistencies in design models often involves
making several changes that do not immediately
resolve all inconsistencies [4].

2. Background and Illustration

Our technique builds on previous work for
automatically and efficiently detecting inconsistencies
in design models [5, 6], understanding trade-offs
among design choices [7], and providing support for
the resolution of such inconsistencies [8, 9].
Figure 2 introduces a simple illustration used in the
remainder of this paper. The figure depicts the model
of a video-on-demand system (VOD) created with the
UML modeling tool IBM Rational Rose™. The model
contains a class, a statechart, and a sequence diagram.
The class diagram (top) represents the two main
components of the VOD system with Display handling
the user IO (visualizing movies and receiving user
input) and Streamer handling the server interaction
from the client perspective. The sequence diagram

(middle) describes the user scenario of selecting a
movie (user invoking select on instance of class
Display). We see that this user invocation then triggers
a communication between Display and Streamer where
Display first requests Streamer to connect to the server
and then requests Streamer to start playing the movie.
The Streamer then draws picture frames in periodic
intervals (only one such draw message is shown).
Finally, the model contains a statechart diagram,
depicting the behavior of the class Streamer (bottom).
The behavior is quite simple. Once instantiated, the
Steamer first establishes a connection to the server and
then toggles between the waiting and streaming mode
depending on the wait or stream events.

Figure 2. Model of Video-On-Demand System

Figure 3. Consistency Rules and Inconsistencies

While the UML specification primarily defines basic
well-formedness rules, researchers have come up with
a wide range of consistency rules to define the
correctness of UML diagrams. A consistency rule is a
formal condition that evaluates a portion of a model. If
a rule is violated then we speak of an inconsistency.

Some of these consistency rules are widely applicable
while others might only apply in certain domains.

Figure 3 depicts three consistency rules. Rule C1
ensures that a message in a sequence diagram is
declared as a method in the receiver’s class. Rule C2
ensures that the behavior of a sequence of messages is
allowed by a state machine. And rule C3 ensures that
the calling direction of a message is allowed by the
calling direction among classes. It must be noted that
consistency rules are written from the perspective of
the meta model. For example, the top of Figure 4
depicts the (simplified) portion of the UML meta
model used by rule C1. Since this rule is instantiated
once for every message, we speak of four consistency
rule instances of rule C1 for the four messages in
Figure 2. One of these four rule instances is
inconsistent (Inconsistency 1).

Inconsistency 1 violates consistency rule C1 because
the class Streamer never declared a method with the
name play. The formal definition of C1 says that the
rule first computes operations = message.receiver.base.
operations. We must look at the actual UML model, to
understand what this instruction means. The bottom of
Figure 4 depicts the portion of the UML model that is
accessed by Inconsistency 1. There we see that
message.receiver is the object st, receiver.base is the
class Streamer, and base.operations are the methods
{connect(), stream(), wait()}. The condition returns
false because the set of method names (operations-
>name) does not contain the message name play.

In [5], we showed that it was possible to detect
inconsistencies quickly. We did so by building a model
profiler for observing which model elements a
consistency checker accessed during the evaluation of
consistency rule instances. For example, when
consistency rule C1 was evaluated on the message play
(resulting in Inconsistency 1) then the profiler
observed the following accesses to model elements
(Figure 4): Message.play [name], Message.play
[receiver], ClassifierRole.st [base], Class.Streamer

[features], Operation.stream [name], Operation.wait
[name], Operation.connect [name].

In [5], this profiling data formed the basis for
deciding when to re-evaluate what consistency rule
instance. In essence, a consistency rule instance only
then had to be re-evaluated if a part of the model
changed that it previously accessed. For example, if
the designer changes the method name connect() then
rule C1 must be re-evaluated on message play because
the method name was accessed during that rule’s
evaluation. Note that in the remainder of this paper, we
identify consistency rule instances through the
consistency rule and model element it was applied on
(e.g., C1 Message.play).

In [9], we demonstrated that an expanded version of
this profiling data was beneficial in understanding
where to fix inconsistencies (i.e., identifying all the
model elements that potentially fix an inconsistency).
Here we must also distinguish between the location
type in the meta model and the location in the model.
While it is straightforward to determine the location
type, identifying the actual location in the model is
much harder. The xlinkit framework [8] did this
determination in part through white-box analysis of
consistency rules while [9] relied on the model
profiler. Both approaches were able to reveal where to
fix inconsistencies (=locations) but not how to fix them
(=values or choices). Deciding how to fix
inconsistencies is the focus of this paper.

3. Problem

The problem addressed in this paper is on

identifying all concrete choices for fixing a model
element such that it resolves a given inconsistency and
does not cause new ones.

Consider again Inconsistency 1, where the receiver’s
class did not declare a method that matched message
play. In [9], we demonstrated how to identify all
potential locations where to fix this inconsistency. One

obvious location is the message name itself
but we could also change the name of one of
the methods or the message receiver.
However, identifying the location where to
fix an inconsistency is only half the solution.
The other half is identifying how to change
that location. Not every change is valid.
Consider, for example, the message name.
There are an infinite number of string choices
available for changing a name. To date there
exists no automated approach for determining
valid choices. The only approach known
today, to manually code fixing rules as
supplements to consistency rules, is not only

operations

sender

name

base

instanceOf instanceOfinstanceOf

Model
features

instanceOf

name

name

name

name

base

name

receiver

sender
Message

name: String
Object

name: String
Class

name: String
Operation

name: String

play

stream

wait

connect

op1

op2

op3

c2

Streamer

o3m3
receiver

Meta-model

st

o2

d

Figure 4. Meta-Model and Model for Inconsistency 1 (simplified)

problematic because of the manual overhead involved
but also because it is inadequate in considering the side
effects of multiple inconsistencies onto a single
location [3]. For example, for changing a message
name, that violated consistency rule C1, a fixing rule
would simply returns all the method names in the
message receiver’s class: the strings connect, stream,
and wait (as did IBM Rational Rose in Figure 1).
While this fixing rule approach is simple, we must
consider the following problems:

Problem 1: Fixing Rules for all Locations

The tool developer must re-write the fixing rule
(manually!) for every location where the inconsistency
could be fixed. For example, changing the method
name rather than the message name requires another
fixing rule that is simply Method.name =
Message.name. Alternatively, changing the receiver of
the message play requires yet another fixing rule that
searches for any object in the model whose
base.operations contains the desired name. Indeed,
object d (instance of Display) would be a suitable
object because it has a method with the name play.
One problem with fixing rules is thus its repetition for
every possible location where the inconsistency could
be resolved. Our empirical evaluation on 39 models
and 24 consistency rules showed that the number of
locations is not too large (typically around 5-15) but
consequently requires one fixing rule per location type
and consistency rule (roughly 24 * 5-15 rules) which is
labor intensive and a source of errors.

Problem 2: Fixing Rule for all Consistency Rules

A more severe problem is the interplay among
multiple consistency rule instances. For example, the
above fixing rule for message name play identified all
method names of the class Streamer as choices for
fixing the incorrect message name. Indeed, all of these
names resolve inconsistency 1, however, these choices
also affect consistency rule C2 and its Inconsistency 2.

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

100 1000 10000 100000

Consistency Rule Instances
Inconsistencies found

Figure 5. Number of Consistency Rules Instances in
UML Models and Number of Inconsistencies Found

Inconsistency 2 was about the wrong sequence of
messages in the statechart diagram. Considering the
second inconsistency, we find that neither message
wait nor message connect are allowed to follow
message connect (notice that the connect event in the
statechart diagram leads to the waiting state from
which only the transition stream is allowed).
Consequently, only the message name stream fixes
both inconsistencies.

Considering simultaneously all consistency rules
that affect a model element is particularly hard to do
manually. Design models typically require the
evaluation of a large number of consistency rule
instances. Figure 5 demonstrates the magnitude of the
challenge. There we see that the number of rule
instances (y-axis) increases with the model size (x-
axis). This data is based on the evaluation 39 small-to-
large scale UML models on 24 kinds of consistency
rules. We see that some of the larger models required
tens of thousands of rule instances and often contained
thousands of inconsistencies. It is impossible for a
human user to know which ones of these many rule
instances affect the choices of a particular fix.

Even our small illustration in Figure 2 required 11
consistency rule instances of which only three returned
inconsistencies. Fixing inconsistencies must thus not
only be aware of other inconsistencies but also of
consistencies. So, the true challenge of fixing
inconsistencies is about understanding the side effects
of a change on all affected consistency rules – whether
they be consistent or inconsistent. The fixing rules
identified above failed in this regard.

Problem 3: Consistency Rules differ among Users

Finally, an additional problem when developing tool
support for managing inconsistencies in UML models
is that different designers often use different
consistency rules which may make the resolution rules
defined for one designer useless for another. A truly
useful approach in helping designers fix
inconsistencies must not be ‘hard coded’ to a specific
set of consistency rules.

4. Approach

Our approach and tool solves the problem described
above by systematically exploring all choices in a trial-
and-error exploration. To illustrate this basic idea,
consider a set of choices on how to change a model
element. Each choice is a potential value for fixing a
given inconsistency. Our approach then determines the
validity of these choices by trying them on the model –
one by one – and re-evaluating the consistency of the

model for each trial. A choice is valid if it fixes the
consistency rule and does not cause other
inconsistencies. Otherwise, a choice is invalid.

As input, our approach takes a location where to fix
an inconsistency and as output it generates a list of
choices on how to fix the inconsistency (Figure 6)
without causing any new inconsistencies. Our current
approach considers choices from the pool of existing
model elements only. This approach thus ignores the
creation of new model elements as choices for fixing
inconsistencies. For the modellers (end user), our
approach is fully automated and tool supported (it is
also integrated with the design tool IBM Rational
Rose™) – even if the modellers change the
consistency rules (add/remove/modify). For the tool
builders, our approach does require manual effort in
form of writing the choice generators. However, we
will demonstrate below that writing such generators is
much less effort than writing fixing rules.

Figure 6. Choice Generation and Elimination

While our approach appears simple at first glance, we
must address three important issues:

• How do we generate the initial set of choices?
• How do we know what rules to re-evaluate to

eliminate false choices?
• Is this approach correct and does it scale?

The remainder of the paper will explore these issues.

4.1. Choice Generation

Choice generation functions generate possible

values that specific fields of a model element may take.
They only consider values that are already present in
the model so that the generation and evaluation of
choices can be done fully automatically without user
intervention. However, a brute force generation of
choices is not scalable. Figure 7 shows that larger
models would yield thousands of choices per location.

To counter the scalability problem, our choice
generation functions are manually custom-tailored to
syntactical constraints of the modeling language – in
particular to its well-formedness criteria. For example,
we defined the choice generation function for fixing
the receiver of a message as including objects of the

same sequence diagram only. This function reflects the
fact that, in UML, messages may not refer to objects
outside a sequence diagram (row 1 in Table 1).

G
en

er
at

ed
 c

ho
ic

es

Figure 7. Brute Force Choice Generation does not

Scale with the Model Size

Table 1. Example of four manually customized
Choice Generator Functions

1 m:Message.receiver:
 choices = m.interaction.classifierRoles

2 m:Message.name:
 choices = {}
 foreach (method in m.receiver.base.methods)
 choices.insert(method.name)

3 ae:AssociationEnd.multipliciy
 choices = {1, 0..1, 1..n, 0..n}

4 c:Class.namespace
 choices = {}
 foreach (a in c.associations)
 foreach (oc in a.classifiers)
 choices.insert(oc.namespace)

The choice generation functions are mostly

independent from the consistency rules so as to ease
their implementation and make them more usable
across projects that use different consistency rules. At
the present time, the functions must be coded
manually. The difference to fixing rules discussed
earlier is that we only require one function per location
type. This significantly reduces the implementation
overhead required for coding:

O(#consistency rules * #location types) fixing rules

versus
O(#location types) choice generator functions.

Moreover, the choice generation functions need not

consider the impact of multiple consistency rules. This
eliminates much of the complexity of writing them. It
should be noted that in a few cases we based choice
generation functions on consistency rules. As an

example, consider the choices for fixing a message
name which is not adequately constrained through
well-formedness rules. To limit the near-infinite
number of name strings, we devised a choice
generation function based on consistency rule C1. The
choice generator thus simply returns the names of
methods in the message receiver’s class (row 2 in
Table 1). We previously introduced this rule as a
fixing rule for C1. Basing choices on consistency rules
is not a problem unless the consistency rule is
considered irrelevant by a designer.

It is important to note that the choice generator
function must only be written once per modeling
language and is reusable across domains. Ideally, the
tool builder creates it. The modeller (end user of our
approach) does not have to customize the choice
generator unless she changes the modeling language.

4.2. Choice Reduction

Choice generator functions are simple but may

produce false choices. The choice reduction step then
eliminates all those choices that cannot satisfy all
consistency rules. This problem is very hard because
there are many instances of consistency rules (typically
tens of thousands) and every choice may affect
different consistency rule instances. Again, a brute
force approach of simply re-evaluating all consistency
rule instances would not scale (recall Figure 5). Our
approach instead relies on its ability to perform instant,
incremental consistency checking.

To illustrate this, let us again try to fix
Inconsistency 1 by changing the name of message
play. In this case, the choice generator suggests the
following potential choices: connect, stream, and wait.

The figure above depicts the result of our tool’s
exploration of these choices. The original value, string
play, is also included for comparison. We see that play
is an invalid name because it cannot satisfy the rule C1
Message.play – i.e., play is not declared as a method in
the receiver class). While the other three values all
satisfy rule C1, not all of them are valid because a

second consistency rule interferes. The second rule, C2
ClassifierRole.st, ensures that the sequence of message
names is allowed in the statechart diagram. Choices
wait and connect are invalid because neither is allowed
to follow the message connect. Choice stream, on the
other hand, is allowed to follow connect.

Another way of fixing Inconsistency 1 is to change
the receiver of message play (see figure above).
Currently, the receiver of that message is object st and
we could change the receiver to either the instance of
User (object u) or the instance of Display (object d).
While our tool’s exploration appears to be similar to
the exploration of the message name choices above, do
note that we are no longer dealing with the exact same
consistency rule instances. While fixing the message
name required the re-evaluation of ruleinstances of C1
and C2, fixing the message receiver requires the re-
evaluation of rule instances of C1 and C3. Rule C3
MMessage.play is concerned with the calling direction
of a message.

The original message receiver (object st) did not
violate that consistency rule because the calling
direction of message play was consistent with the
association direction in the class diagram (i.e., note
that the class Display is allowed to call the class
Streamer). However, if we change the receiver of
message play to object u, an instance of User, then we
trigger an inconsistency because User is not allowed to
call methods of Streamer. Object d is however a valid
choice because Display is allowed to call itself
(implicit in the rule). As a result, choice u is
eliminated. The two remaining choices are re-explored
in context of rule C1 where object st is eliminated.

Figure 8. Two Choices for Fixing Inconsistency 1

Therefore, the first inconsistency can be fixed in at
least two ways as depicted in Figure 8:

1) changing the receiver of the message to object d
2) changing the name of the message to stream

It is important to note that we do not decide
automatically on what fix to choose. The designer will
make this decision [10].

4.3. Impact of a Change

Obviously, this approach is only then correct if it

can identify all consistency rule instances affected by a
fix (i.e., all of them must be re-evaluated). In previous
work [5], we demonstrated how to identify all affected
consistency rules instances under the assumption that
we know all model elements that have changed.
However, the challenge here is that a single design
change often modifies multiple model elements. That
is, the change suggested by one of our fix choices
affect not only the element being fixed but also other
elements that reference it. Consider the example of the
message draw. The receiver of message draw refers to
object d. Since the internal data structure of UML uses
classical forward and backward chaining, the reference
from the message receiver implies a backward
reference from object’s incomingMessages field. Much
of the meta model of the UML is composed of such bi-
directional references. The single fix of message
receiver thus changes three model elements: 1)
message receiver, 2) object d’s incomingMessages (it
looses a message), and 3) object st’s
incomingMessages (it gains a message).

Our approach must thus identify all model elements
affected by a choice in order to determine all
consistency rule instances that are affected by that
choice. This problem can be solved easily by
maintaining records of (back)pointers. Like the choice
generator functions, these data structures are generic
and need only be built once per modeling language.

5. Scalability and Correctness Usability

We evaluated our approach on 39 UML models

with model sizes between 100-120,000 elements. For
measuring the model sizes, we only counted those
elements that were used during the consistency
checking of the 24 types of consistency rules included
in this study. Depending on the model size,
consistency rules were instantiated many times. In total
223,000 consistency rule instances were evaluated.

The 39 models were rather diverse. Most models
originated from industry, some were reverse
engineered, and yet others were obtained through
colleagues. In terms of domains, the models covered
avionics systems, medical systems, data-centric

systems, and closed-loop types of systems. All of these
models were built with the modeling tool IBM
Rational Rose™. Their level of consistency was also
diverse – between 2-26% with an average of 8.4%.

11
8

28
4

53
3

62
0

62
4

78
1

83
0

83
8

10
20

11
31

11
89

12
00

15
86

16
89

18
32

18
73

21
77

22
42

28
40

29
74

33
52

33
91

35
81

36
63

38
18

43
56

46
86

49
86

67
87

74
79

76
97

23
50

1
31

41
6

48
41

3
71

17
6

79
21

8
10

13
72

10
13

74
12

04
88

model size

0
1
2
3
4
5
6
7
8
9 Generated Choices

Reduced Choices

Figure 9. Generated Choices and Reduced Choices

In this study, we looked at 14 types of locations.
These 14 types of locations adequately covered many
interesting places for fixing inconsistencies though this
study cannot be considered exhaustive because the
UML meta model is much larger. We then defined 14
choice generator functions to cover the 14 types of
locations. In the 39 models, these 14 types of locations
occurred 65,379 times. We then proceeded in
exhaustingly computing the choices for fixing all these
locations. Figure 9 depicts the number of choices
generated by our approach. It was surprising to find
that in average only 2.4 valid choices (with a worst
case of 69 choices) were found for fixing a location.
Moreover, the number of choices for fixing
inconsistencies did not increase with the size of the
model. Both observations are beneficial for usability
because the user is not overwhelmed with a large
number of valid choices. Our approach also proved to
be highly scalable in terms of performance. In average,
the choice generation and reduction required only
11ms per location on a 2.2GHz Pentium Processor.

0

5

10

15

20

25

100 1000 10000 100000
model size

Figure 10. Number of Locations for Fixing
Inconsistencies (with/without false ones)

Through our previous work [9], we already knew
that there are in average few locations were to fix any

given inconsistency. For the 39 models and 24
consistency rules included in this study, there were in
average 10.4 such locations per inconsistency (Figure
10). Therefore, the total number of choices for fixing
an inconsistency was in average 10.4 locations * 2.4
choices per location ≈ 25 choices.

While [9] was able to identify all locations, the list
did contain false positives. A false location is a
location for which no valid choice exists. Such false
locations are not uncommon as indicated in Figure 10
through a vertical error bar. In average, 11.2% of all
locations suggested in [9] were false. This fact was
recognized in that paper. This paper also eliminates
this drawback. By exploring choices, we are now able
to automatically detect these false locations. Of the
remaining, valid locations, roughly 48% had multiple
valid choices whereas 40% had only a single valid
choice. This observation might prove useful in future
work since locations with single choices suggest the
possibility of auto-correction.

Our approach does not suggest false choices (i.e.,
false positives) because we are able to identify all
consistency rules affected by a fix automatically.
However, since writing the choice generator involves
manual overhead, our approach may miss valid choices
if the choice generator does not find them. It is
therefore important to design the choice generator
well. Fortunately, choice generator functions are
generic and can be used across domains and
applications. Moreover, the cost of writing them is
small in comparison to fixing rules. Note that instead
of manually writing O(#type of consistency rules *
#types of locations) fixing rules, our approach only
requires O(#types of locations) choice generate rules –
a significant savings.

6. Threads to Validity

This study was based on 39 small-to-large UML
models covering a wide range of domains and
originating from a diverse set of designers. The 24
types of consistency rules were representative of
consistency rules found in industry. The 14 types of
locations were typical locations for fixing
inconsistencies. Since the 24 types of consistency rules
were instantiated over 223,000 times and the 14 types
of location occurred over 65,000 times in the 39 UML
models, we are confident that our findings are accurate
with respect to the rules and locations used.

However, there are many other types of consistency
rules and many more types of locations. Only 17% of
all relevant locations were evaluated in this case study.
Of the remaining locations, 4% were deemed
unchangeable (i.e., we believe that they should never

be changed) and the rest were simply undefined. This
leaves a large pool of uncertainty and thus we cannot
generalize that every location will be scalable or
useable. Yet, given that our findings are highly
encouraging, we believe that our approach would scale
with respect to many other consistency rules and
locations as well.

Another limitation of this work is its restriction to
single changes. While this work allows the designer to
explore the different choices for fixing inconsistencies,
even among multiple locations, these choices are
mutually exclusive (i.e., every choice is considered
separate). Yet, there are cases where adequately fixing
an inconsistency may involve several concurrent
changes – where each change may not resolve all
inconsistencies or may even temporarily introduce new
ones, before reaching a consistent state. So, this work
cannot be considered a complete solution to the
problem of fixing inconsistencies.

Finally, this work generated choices solely from the
pool of existing model elements. This approach thus
did not consider the creation of new model elements to
fixing inconsistencies. This problem is in fact related
to the earlier point of restricting to single changes
since the creation of new model elements would
typically involve multiple concurrent changes.

7. Related Work

This work in essence explores trade-offs among
design decisions. In Section 2, we already outlined the
differences to our extensive previous work [5-9]. In the
following, we discuss other relevant work.

A very significant problem is reasoning about
inconsistencies that are the result of conflicts among
multiple stakeholders – often referred to as viewpoints.
For example, [11] and [12] define techniques for
reasoning formally over multiple models despite the
presence of logical inconsistencies. [13] defines a
technique for merging conceptual models and
detecting inconsistencies over the merged model.
These techniques focus on handling inconsistencies
between multiple models expressed in a single
language, either conceptual models or state machine
models, and do not explicitly support the generation of
concrete ways to resolve inconsistencies. In contrast,
the techniques describe in this paper deal with multi-
paradigm descriptions and aims at providing support
for transforming the models so as to fix
inconsistencies. We do not however support the
merging of different models coming from different
sources and formal reasoning about the behavioral
properties of our models. Most of our consistency rules

are the equivalent of the static semantic rules of
programming languages.

While it is important to know about inconsistencies,
it is often too distracting to resolve them right away.
The notion of “living with inconsistencies” [4]
advocates that there is a benefit in allowing
inconsistencies in design models on a temporary basis.
While our approach provides fixes for inconsistencies
instantly, it does not require the engineers to fix
inconsistencies when they first occur (although it could
be used that way). Our approach tracks all presently-
known inconsistencies and lets the engineers decide
when to resolve what inconsistencies.

Our work is loosely related to the constraint
satisfaction problem (CSP). CSP deals with the
combinatorial problem of what choices best satisfy a
given set of constraints. Since this problem is
computationally expensive, certain optimizations have
been developed. In particular, the AC3 optimization
[14] defines a mapping between choices and the
constraints they affect. Constraints are only then re-
evaluated if their choices change. We borrowed this
concept in our use of scopes. A key difference is that
CSP uses “white-box constraints.” It is thus known, in
advance, what choices a constraint will encounter.
Consistency rules in UML typically are black-box
constraints. This is the why our approach relies on
model profiling. Since model checkers, such as Alloy
[15], are built in part on CSP-like technology, they are
also quite capable of solving the problem in this paper.
However, since our approach is specifically tailored to
the problem of fixing inconsistencies in design models,
it does not suffer from the scalability problems.

The work of Briand et al. [3] is also relevant to our
approach because it computes change actions for UML
models. However, it identifies specific change
propagation rules for all types of changes. This is
problematic because there is no guarantee of
correctness or completeness associated with these
rules. The work by Robins et al. [16] is similar in that
it introduces wizards which are defined manually.
However, it is very hard to enumerate all kinds of
changes and all their effects [5]. Our approach does
not require such annotations.

An area that seems related to fixing inconsistencies
is that of repairing data structures in databases or code.
In particular, the assertion-based approach in [17]
appears similar since there faults in data structures are
repaired through constraint-based reasoning which is
not unlike consistency rules. However, their approach
applies to code and does not take under consideration
multi-paradigm modeling. Also, their approach applies
only to the fixing of faults that are simple enough for

automated approaches to not only identify the choices
for fixing it but also selecting the most suitable one.

It must be emphasized that dealing with choices in
design models is about more than just reducing
infeasible choices. Outside the scope of this paper
were thus other aspects of fixing inconsistencies, such
as keeping a formal history of the choices [18] for later
maintenance, using version control and rollback
mechanisms [19], recording why each alternative is
rejected [20], managing the problem-domain
dependencies among the decisions [21], decentralized
consistency [22] and consistency checking among
different languages [23]. However, it is easy to see that
all these areas affect the fixing of inconsistencies and
future work will explore these and other issues.

8. Conclusions

We have developed tool support allowing UML
modelers to systematically explore alternative ways of
fixing inconsistencies at different locations in the
model (some of which may not be obvious) and
anticipate the impact of such changes on all
consistency rules simultaneously. Our technique can
only generate fixes to inconsistencies whose resolution
does not require the designer to introduce new model
elements or new names. The latter case could however
be partially handled by defining default name
generation mechanisms in the value generator for some
location type (for example, generating default names
for roles in an association).

More importantly, our technique can only generate
resolutions that involve change in a single location at
a time. Frequently, resolving an inconsistency involves
changing multiple model elements simultaneously. For
example, fixing an inconsistent message name in a
message sequence chart may involve changing a
method name in a class diagram and several transitions
in a sequence diagram. We plan on addressing this
problem by developing an adequate set of higher-level
model evolution operators [24] that aggregates the
application of the elementary changes we have
considered so far and correspond to frequently needed
model transformation steps.

 The approach described here on UML models can
be transferred to other meta-models and consistency
rules. In future work, we wish to develop a generic
meta-tool that would allow tool developers to
automatically instantiate our techniques for identifying
and resolving inconsistencies to any meta-model. In
particular, we envision enriching the XML-based
techniques of xlinkit to MOF-based meta-model
descriptions.

9. Acknowledgement

We gratefully acknowledge support from EPSRC

through Standard Research Grant EP/F032110/1.

10. References

[1] J. Rumbaugh, J. Ivar, and B. Grady, The Unified

Modeling Language Reference Manual: Addison
Wesley, 1999.

[2] A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer,
and B. Nuseibeh, "Inconsistency Handling in
Multi-Perspective Specifications," Transactions
on Softw. Eng., vol. 20, pp. 569-578, 1994.

[3] L. C. Briand, Y. Labiche, and L. O'Sullivan,
"Impact Analysis and Change Management of
UML Models," Proceedings of the International
Conference on Software Maintenance (ICSM),
Amsterdam, The Netherlands, 2003.

[4] R. Balzer, "Tolerating Inconsistency,"
Proceedings of 13th International Conference on
Software Engineering (ICSE), 1991.

[5] A. Egyed, "Instant Consistency Checking for the
UML," Proceedings of the International
Conference on Software Engineering, 2006.

[6] C. Nentwich, L. Capra, W. Emmerich, and A.
Finkelstein, "xlinkit: a consistency checking and
smart link generation service," ACM Transactions
on Internet Technology,vol. 2, pp. 151-185, 2002.

[7] A. Egyed and D. S. Wile, "Support for Managing
Design-Time Decisions," IEEE Transactions on
Software Engineering vol. 32, pp. 299-314, 2006.

[8] C. Nentwich, W. Emmerich, and A. Finkelstein,
"Consistency Management with Repair Actions,"
Proceedings of the 25th International Conference
on Software Engineering (ICSE), Portland,
Oregon, USA, 2003.

[9] A. Egyed, "Fixing Inconsistencies in UML
Design Models," Proceedings of the International
Conference on Software Engineering 2007.

[10] R. van Der Straeten, T. Mens, J. Simmonds, and
V. Jonckers, "Using Description Logic to
Maintain Consistency between UML Models,"
Proceedings of 6th International Conference on
the Unified Modeling Language (UML), 2003.

[11] A. Hunter and B. Nuseibeh, "Analysing
Inconsistent Specifications," presented at
Proceedings of 3rd International Symposium on
Requirements Engineering (RE), 1997.

[12] S. Easterbrook and M. Chechik, "A Framework
for Multi-Valued Reasoning over Inconsistent
Viewpoints," Proceedings of the 23rd

International Conference on Software
Engineering, 2001.

[13] M. Sabetzadeh, S. Nejati, S. Liaskos, S.
Easterbrook, and M. Chechik, "Consistency
Checking of Conceptual Models via Model
Merging," Proceedings of the 15th IEEE
International Requirements Engineering
Conference, New Delhi, India, 2007.

[14] A. K. Mackworth, "Consistency in Networks of
Relations," Journal of Artificial Intelligence vol.
8, pp. 99-118, 1977.

[15] D. Jackson, "Alloy: A lightweight object
modelling notation," ACM Transactions on
Software Engineering Methododlogy vol. 11,
2002.

[16] J. Robbins and D. Redmiles, "Cognitive Support,
UML Adherence, and XMI Interchange in
Argo/UML," International Conference on
Construction of Software Engineering Tools, Los
Angeles, CA, 1999.

[17] B. Elkarablieh, I. Garcia, Y. L. Suen, and S.
Khurshid, "Assertion-based repair of complex
data structures," Proceedings of the 22nd
International Conference on Automated Software
Engineering, Atlanta, GA, 2007.

[18] A. G. Cass and L. J. Osterweil, "Requirements-
Based Design Guidance: A Process-Centered
Consistency Management Approach," in
Department of Computer Science, University of
Massachusetts, Amherst, MA 01003 (UM-CS-
2002-024), 2002.

[19] A. van der Hoek and E. Dashofy, "xADL 2.0," in
http://www.isr.uci.edu/projects/xarchuci/.

[20] D. Wile, "Program Developments: Formal
Explanations of Implementations,"
Communications of the ACM vol. 26, 1983.

[21] M. L. Begeman and J. Conklin, "The right tool
for the job," Byte vol. 13, pp. 255-266, 1988.

[22] S. M. Kaplan and G. E. Kaiser, "Incremental
attribute evaluation in distributed language-based
environments," Proceedings of the 5th Annual
Symposium on Principles of Distributed
Computing, Calgary, Canada, 1986.

[23] R. N. Taylor, R. W. Selby, M. Young, F. C. Belz,
L. A. Clarce, J. C. Wileden, L. Osterweil, and A.
L. Wolf, "Foundations of the Arcadia
Environment Architecture," Proceedings of the
4th Symposium on Software Development
Environments, Irvine, CA, 1998.

[24] W. L. Johnson and M. Feather, "Building an
Evolution Transformation Library," Proceedings
of the 12th International Conference on Software
Engineering Nice, France, 1990.

