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Abstract 
Our objective is to provide automated support for 
assisting designers in fixing inconsistencies in UML 
models. We have previously developed techniques for 
efficiently detecting inconsistencies in such models and 
identifying where changes need to occur in order to fix 
problems detected by these means. This paper extends 
previous work by describing a technique for 
automatically generating a set of concrete changes for 
fixing inconsistencies and providing information about 
the impact of each change on all consistency rules. The 
approach is integrated with the design tool IBM 
Rational RoseTM. We demonstrate the computational 
scalability and usability of the approach through the 
empirical evaluation of 39 UML models of sizes up to 
120,000 elements. 
 
1. Introduction 

 
Integrated development environments (IDE) 

provide rich automated features for detecting and 
fixing errors at the code level. For example, Eclipse 
has support for so-called "Quick Fixes" that generate 
potential resolutions for resolving Java errors. 
Programmers find these resolution mechanisms 
extremely useful. Some design tools have started to 
develop similar features by presenting choices for 
fixing design problems. Figure 1 shows a capability of 
the UML tool IBM Rational Rose™, which suggests 
the set of choices stream(), wait(), and connect() to fix 
the incorrect message name play in a sequence 
diagram. However, the support currently provided at 
the model level is very limited.  

For modeling languages, such as UML [1], 
constraints are typically defined in form of consistency 
rules [2]. Automated resolution mechanisms then 

require tool developers to manually implement 
separate fixing rules for every location where a 
violation of a consistency rule could occur. When the 
number of consistency rules increases, this represents a 
significant effort. Furthermore, developers of such 
resolution mechanisms must take care that their fixes 
are correct in the sense that they resolve the 
inconsistencies without introducing new ones. For 
multi-paradigm modeling languages, such as UML, 
this is extremely difficult to achieve because of the 
numerous interactions among consistency rules. An 
additional problem when developing tool support for 
resolution mechanisms in UML models is that different 
development teams often use different consistency 
rules and different set of consistency rules may be used 
at different stages of the project lifecycle. This make a 
‘hard coded’ resolution mechanism defined for a fixed 
set of consistency rules almost useless.   

This paper suggests an alternative approach that 
eliminates the need for creating fixing rules altogether. 
The approach first generates a set of values a model 

 
Figure 1. IBM Rational Rose™ Suggesting a Fix 

for an incorrect Message Name 



element may take. The values generated depend on the 
model element expected type and on the set of values 
of that type already present in the model. This set may 
contain valid and invalid choices with respect to the 
consistency rules. The approach then prunes the set of 
values trough incremental consistency checking. The 
result is a set of choices on how to fix an inconsistency 
that is guaranteed not to violate any known consistency 
rule (i.e., impact of a change [3]). The critical step of 
our technique is to discover and re-evaluate the correct 
and complete set of consistency rules that are affected 
by a fix. This paper also presents an empirical 
scalability analysis showing that this approach 
maintains instantaneous response time to user queries 
even when the size of the models increases. 

For modellers (the end users of modeling tools), 
our approach is fully automated. Manual overhead is 
required for the tool builders responsible for 
implementing the value generation functions. 
However, even tool builders save effort with respect to 
the alternative approach of developing resolution 
functions that are dependent on the violated 
consistency rules because the development of the 
choice generators is much simpler than that of 
resolution rules. An important additional benefit of our 
approach is that the value generation functions do not 
need to be changed when consistency rules change (an 
extremely frequent situation with UML modeling). Our 
generate and prune approach also has the advantage 
that it provides rich feedback to the designer by 
presenting not only valid choices satisfying all 
consistency rules, but also why invalid ones could not. 
We believe this feature is particularly useful because 
fixing inconsistencies in design models often involves 
making several changes that do not immediately 
resolve all inconsistencies [4]. 
 

2. Background and Illustration 
 

Our technique builds on previous work for 
automatically and efficiently detecting inconsistencies 
in design models [5, 6], understanding trade-offs 
among design choices [7], and providing support for 
the resolution of such inconsistencies [8, 9].  
Figure 2 introduces a simple illustration used in the 
remainder of this paper. The figure depicts the model 
of a video-on-demand system (VOD) created with the 
UML modeling tool IBM Rational Rose™. The model 
contains a class, a statechart, and a sequence diagram. 
The class diagram (top) represents the two main 
components of the VOD system with Display handling 
the user IO (visualizing movies and receiving user 
input) and Streamer handling the server interaction 
from the client perspective. The sequence diagram 

(middle) describes the user scenario of selecting a 
movie (user invoking select on instance of class 
Display). We see that this user invocation then triggers 
a communication between Display and Streamer where 
Display first requests Streamer to connect to the server 
and then requests Streamer to start playing the movie. 
The Streamer then draws picture frames in periodic 
intervals (only one such draw message is shown). 
Finally, the model contains a statechart diagram, 
depicting the behavior of the class Streamer (bottom). 
The behavior is quite simple. Once instantiated, the 
Steamer first establishes a connection to the server and 
then toggles between the waiting and streaming mode 
depending on the wait or stream events. 

 

 
Figure 2. Model of Video-On-Demand System 

 

 
Figure 3. Consistency Rules and Inconsistencies 

 

While the UML specification primarily defines basic 
well-formedness rules, researchers have come up with 
a wide range of consistency rules to define the 
correctness of UML diagrams. A consistency rule is a 
formal condition that evaluates a portion of a model. If 
a rule is violated then we speak of an inconsistency. 



Some of these consistency rules are widely applicable 
while others might only apply in certain domains.  

Figure 3 depicts three consistency rules. Rule C1 
ensures that a message in a sequence diagram is 
declared as a method in the receiver’s class. Rule C2 
ensures that the behavior of a sequence of messages is 
allowed by a state machine. And rule C3 ensures that 
the calling direction of a message is allowed by the 
calling direction among classes. It must be noted that 
consistency rules are written from the perspective of 
the meta model. For example, the top of Figure 4 
depicts the (simplified) portion of the UML meta 
model used by rule C1. Since this rule is instantiated 
once for every message, we speak of four consistency 
rule instances of rule C1 for the four messages in 
Figure 2. One of these four rule instances is 
inconsistent (Inconsistency 1).  

Inconsistency 1 violates consistency rule C1 because 
the class Streamer never declared a method with the 
name play. The formal definition of C1 says that the 
rule first computes operations = message.receiver.base. 
operations. We must look at the actual UML model, to 
understand what this instruction means. The bottom of 
Figure 4 depicts the portion of the UML model that is 
accessed by Inconsistency 1. There we see that 
message.receiver is the object st, receiver.base is the 
class Streamer, and base.operations are the methods 
{connect(), stream(), wait()}. The condition returns 
false because the set of method names (operations-
>name) does not contain the message name play. 

In [5], we showed that it was possible to detect 
inconsistencies quickly. We did so by building a model 
profiler for observing which model elements a 
consistency checker accessed during the evaluation of 
consistency rule instances. For example, when 
consistency rule C1 was evaluated on the message play 
(resulting in Inconsistency 1) then the profiler 
observed the following accesses to model elements 
(Figure 4): Message.play [name], Message.play 
[receiver], ClassifierRole.st [base], Class.Streamer 

[features], Operation.stream [name], Operation.wait 
[name], Operation.connect [name]. 

In [5], this profiling data formed the basis for 
deciding when to re-evaluate what consistency rule 
instance. In essence, a consistency rule instance only 
then had to be re-evaluated if a part of the model 
changed that it previously accessed. For example, if 
the designer changes the method name connect() then 
rule C1 must be re-evaluated on message play because 
the method name was accessed during that rule’s 
evaluation. Note that in the remainder of this paper, we 
identify consistency rule instances through the 
consistency rule and model element it was applied on 
(e.g., C1 Message.play). 

In [9], we demonstrated that an expanded version of 
this profiling data was beneficial in understanding 
where to fix inconsistencies (i.e., identifying all the 
model elements that potentially fix an inconsistency). 
Here we must also distinguish between the location 
type in the meta model and the location in the model. 
While it is straightforward to determine the location 
type, identifying the actual location in the model is 
much harder. The xlinkit framework [8] did this 
determination in part through white-box analysis of 
consistency rules while [9] relied on the model 
profiler. Both approaches were able to reveal where to 
fix inconsistencies (=locations) but not how to fix them 
(=values or choices). Deciding how to fix 
inconsistencies is the focus of this paper. 

 
3. Problem 

 
The problem addressed in this paper is on 

identifying all concrete choices for fixing a model 
element such that it resolves a given inconsistency and 
does not cause new ones.  

Consider again Inconsistency 1, where the receiver’s 
class did not declare a method that matched message 
play. In [9], we demonstrated how to identify all 
potential locations where to fix this inconsistency. One 

obvious location is the message name itself 
but we could also change the name of one of 
the methods or the message receiver. 
However, identifying the location where to 
fix an inconsistency is only half the solution. 
The other half is identifying how to change 
that location. Not every change is valid. 
Consider, for example, the message name. 
There are an infinite number of string choices 
available for changing a name. To date there 
exists no automated approach for determining 
valid choices. The only approach known 
today, to manually code fixing rules as 
supplements to consistency rules, is not only 
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problematic because of the manual overhead involved 
but also because it is inadequate in considering the side 
effects of multiple inconsistencies onto a single 
location [3]. For example, for changing a message 
name, that violated consistency rule C1, a fixing rule 
would simply returns all the method names in the 
message receiver’s class: the strings connect, stream, 
and wait (as did IBM Rational Rose in Figure 1). 
While this fixing rule approach is simple, we must 
consider the following problems: 

 
Problem 1: Fixing Rules for all Locations 

The tool developer must re-write the fixing rule 
(manually!) for every location where the inconsistency 
could be fixed. For example, changing the method 
name rather than the message name requires another 
fixing rule that is simply Method.name = 
Message.name. Alternatively, changing the receiver of 
the message play requires yet another fixing rule that 
searches for any object in the model whose 
base.operations contains the desired name. Indeed, 
object d (instance of Display) would be a suitable 
object because it has a method with the name play. 
One problem with fixing rules is thus its repetition for 
every possible location where the inconsistency could 
be resolved. Our empirical evaluation on 39 models 
and 24 consistency rules showed that the number of 
locations is not too large (typically around 5-15) but 
consequently requires one fixing rule per location type 
and consistency rule (roughly 24 * 5-15 rules) which is 
labor intensive and a source of errors.  

 
Problem 2: Fixing Rule for all Consistency Rules 

A more severe problem is the interplay among 
multiple consistency rule instances. For example, the 
above fixing rule for message name play identified all 
method names of the class Streamer as choices for 
fixing the incorrect message name. Indeed, all of these 
names resolve inconsistency 1, however, these choices 
also affect consistency rule C2 and its Inconsistency 2.  
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Figure 5. Number of Consistency Rules Instances in 
UML Models and Number of Inconsistencies Found 

 

Inconsistency 2 was about the wrong sequence of 
messages in the statechart diagram. Considering the 
second inconsistency, we find that neither message 
wait nor message connect are allowed to follow 
message connect (notice that the connect event in the 
statechart diagram leads to the waiting state from 
which only the transition stream is allowed). 
Consequently, only the message name stream fixes 
both inconsistencies.  

Considering simultaneously all consistency rules 
that affect a model element is particularly hard to do 
manually. Design models typically require the 
evaluation of a large number of consistency rule 
instances. Figure 5 demonstrates the magnitude of the 
challenge. There we see that the number of rule 
instances (y-axis) increases with the model size (x-
axis). This data is based on the evaluation 39 small-to-
large scale UML models on 24 kinds of consistency 
rules. We see that some of the larger models required 
tens of thousands of rule instances and often contained 
thousands of inconsistencies. It is impossible for a 
human user to know which ones of these many rule 
instances affect the choices of a particular fix. 

Even our small illustration in Figure 2 required 11 
consistency rule instances of which only three returned 
inconsistencies. Fixing inconsistencies must thus not 
only be aware of other inconsistencies but also of 
consistencies. So, the true challenge of fixing 
inconsistencies is about understanding the side effects 
of a change on all affected consistency rules – whether 
they be consistent or inconsistent. The fixing rules 
identified above failed in this regard.  

 
Problem 3: Consistency Rules differ among Users 

Finally, an additional problem when developing tool 
support for managing inconsistencies in UML models 
is that different designers often use different 
consistency rules which may make the resolution rules 
defined for one designer useless for another. A truly 
useful approach in helping designers fix 
inconsistencies must not be ‘hard coded’ to a specific 
set of consistency rules. 

 
4. Approach 
 

Our approach and tool solves the problem described 
above by systematically exploring all choices in a trial-
and-error exploration. To illustrate this basic idea, 
consider a set of choices on how to change a model 
element. Each choice is a potential value for fixing a 
given inconsistency. Our approach then determines the 
validity of these choices by trying them on the model – 
one by one – and re-evaluating the consistency of the 



model for each trial. A choice is valid if it fixes the 
consistency rule and does not cause other 
inconsistencies. Otherwise, a choice is invalid.  

As input, our approach takes a location where to fix 
an inconsistency and as output it generates a list of 
choices on how to fix the inconsistency (Figure 6) 
without causing any new inconsistencies. Our current 
approach considers choices from the pool of existing 
model elements only. This approach thus ignores the 
creation of new model elements as choices for fixing 
inconsistencies. For the modellers (end user), our 
approach is fully automated and tool supported (it is 
also integrated with the design tool IBM Rational 
Rose™) – even if the modellers change the 
consistency rules (add/remove/modify). For the tool 
builders, our approach does require manual effort in 
form of writing the choice generators. However, we 
will demonstrate below that writing such generators is 
much less effort than writing fixing rules. 

 

 
Figure 6. Choice Generation and Elimination 

 

While our approach appears simple at first glance, we 
must address three important issues: 
 

• How do we generate the initial set of choices? 
• How do we know what rules to re-evaluate to 

eliminate false choices?  
• Is this approach correct and does it scale? 
 
The remainder of the paper will explore these issues. 

 
4.1. Choice Generation 

 
Choice generation functions generate possible 

values that specific fields of a model element may take. 
They only consider values that are already present in 
the model so that the generation and evaluation of 
choices can be done fully automatically without user 
intervention. However, a brute force generation of 
choices is not scalable. Figure 7 shows that larger 
models would yield thousands of choices per location.  

To counter the scalability problem, our choice 
generation functions are manually custom-tailored to 
syntactical constraints of the modeling language – in 
particular to its well-formedness criteria. For example, 
we defined the choice generation function for fixing 
the receiver of a message as including objects of the 

same sequence diagram only. This function reflects the 
fact that, in UML, messages may not refer to objects 
outside a sequence diagram (row 1 in Table 1).  
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Figure 7. Brute Force Choice Generation does not 

Scale with the Model Size 
 

Table 1. Example of four manually customized 
Choice Generator Functions  

1 m:Message.receiver:  
 choices = m.interaction.classifierRoles 

2 m:Message.name:  
 choices = {} 
 foreach (method in m.receiver.base.methods)
  choices.insert(method.name) 

3 ae:AssociationEnd.multipliciy 
 choices = {1, 0..1, 1..n, 0..n} 

4 c:Class.namespace 
 choices = {} 
 foreach (a in c.associations) 
  foreach (oc in a.classifiers) 
   choices.insert(oc.namespace) 

 
The choice generation functions are mostly 

independent from the consistency rules so as to ease 
their implementation and make them more usable 
across projects that use different consistency rules. At 
the present time, the functions must be coded 
manually. The difference to fixing rules discussed 
earlier is that we only require one function per location 
type. This significantly reduces the implementation 
overhead required for coding:  

 
O(#consistency rules * #location types) fixing rules  

versus  
O(#location types) choice generator functions.  
 
Moreover, the choice generation functions need not 

consider the impact of multiple consistency rules. This 
eliminates much of the complexity of writing them. It 
should be noted that in a few cases we based choice 
generation functions on consistency rules.  As an 



example, consider the choices for fixing a message 
name which is not adequately constrained through 
well-formedness rules. To limit the near-infinite 
number of name strings, we devised a choice 
generation function based on consistency rule C1. The 
choice generator thus simply returns the names of 
methods in the message receiver’s class (row 2 in 
Table 1). We previously introduced this rule as a 
fixing rule for C1. Basing choices on consistency rules 
is not a problem unless the consistency rule is 
considered irrelevant by a designer.  

It is important to note that the choice generator 
function must only be written once per modeling 
language and is reusable across domains. Ideally, the 
tool builder creates it. The modeller (end user of our 
approach) does not have to customize the choice 
generator unless she changes the modeling language.  

 
4.2. Choice Reduction 

 
Choice generator functions are simple but may 

produce false choices. The choice reduction step then 
eliminates all those choices that cannot satisfy all 
consistency rules. This problem is very hard because 
there are many instances of consistency rules (typically 
tens of thousands) and every choice may affect 
different consistency rule instances. Again, a brute 
force approach of simply re-evaluating all consistency 
rule instances would not scale (recall Figure 5). Our 
approach instead relies on its ability to perform instant, 
incremental consistency checking. 

To illustrate this, let us again try to fix 
Inconsistency 1 by changing the name of message 
play. In this case, the choice generator suggests the 
following potential choices: connect, stream, and wait.  

 

 
 

The figure above depicts the result of our tool’s 
exploration of these choices. The original value, string 
play, is also included for comparison. We see that play 
is an invalid name because it cannot satisfy the rule C1 
Message.play – i.e., play is not declared as a method in 
the receiver class). While the other three values all 
satisfy rule C1, not all of them are valid because a 

second consistency rule interferes. The second rule, C2 
ClassifierRole.st, ensures that the sequence of message 
names is allowed in the statechart diagram. Choices 
wait and connect are invalid because neither is allowed 
to follow the message connect. Choice stream, on the 
other hand, is allowed to follow connect. 

 

 
 

Another way of fixing Inconsistency 1 is to change 
the receiver of message play (see figure above). 
Currently, the receiver of that message is object st and 
we could change the receiver to either the instance of 
User (object u) or the instance of Display (object d). 
While our tool’s exploration appears to be similar to 
the exploration of the message name choices above, do 
note that we are no longer dealing with the exact same 
consistency rule instances. While fixing the message 
name required the re-evaluation of ruleinstances of C1 
and C2, fixing the message receiver requires the re-
evaluation of rule instances of C1 and C3.  Rule C3 
MMessage.play is concerned with the calling direction 
of a message.  

The original message receiver (object st) did not 
violate that consistency rule because the calling 
direction of message play was consistent with the 
association direction in the class diagram (i.e., note 
that the class Display is allowed to call the class 
Streamer). However, if we change the receiver of 
message play to object u, an instance of User, then we 
trigger an inconsistency because User is not allowed to 
call methods of Streamer. Object d is however a valid 
choice because Display is allowed to call itself 
(implicit in the rule). As a result, choice u is 
eliminated. The two remaining choices are re-explored 
in context of rule C1 where object st is eliminated.  

 

 
Figure 8. Two Choices for Fixing Inconsistency 1 

 

Therefore, the first inconsistency can be fixed in at 
least two ways as depicted in Figure 8: 

 



1) changing the receiver of the message to object d 
2) changing the name of the message to stream 

 

It is important to note that we do not decide 
automatically on what fix to choose. The designer will 
make this decision [10].  

 
4.3. Impact of a Change 

 
Obviously, this approach is only then correct if it 

can identify all consistency rule instances affected by a 
fix (i.e., all of them must be re-evaluated). In previous 
work [5], we demonstrated how to identify all affected 
consistency rules instances under the assumption that 
we know all model elements that have changed. 
However, the challenge here is that a single design 
change often modifies multiple model elements. That 
is, the change suggested by one of our fix choices 
affect not only the element being fixed but also other 
elements that reference it. Consider the example of the 
message draw. The receiver of message draw refers to 
object d. Since the internal data structure of UML uses 
classical forward and backward chaining, the reference 
from the message receiver implies a backward 
reference from object’s incomingMessages field. Much 
of the meta model of the UML is composed of such bi-
directional references. The single fix of message 
receiver thus changes three model elements: 1) 
message receiver, 2) object d’s incomingMessages (it 
looses a message), and 3) object st’s 
incomingMessages (it gains a message).  

Our approach must thus identify all model elements 
affected by a choice in order to determine all 
consistency rule instances that are affected by that 
choice. This problem can be solved easily by 
maintaining records of (back)pointers. Like the choice 
generator functions, these data structures are generic 
and need only be built once per modeling language. 

 
5. Scalability and Correctness Usability 

 
We evaluated our approach on 39 UML models 

with model sizes between 100-120,000 elements. For 
measuring the model sizes, we only counted those 
elements that were used during the consistency 
checking of the 24 types of consistency rules included 
in this study. Depending on the model size, 
consistency rules were instantiated many times. In total 
223,000 consistency rule instances were evaluated.  

The 39 models were rather diverse. Most models 
originated from industry, some were reverse 
engineered, and yet others were obtained through 
colleagues. In terms of domains, the models covered 
avionics systems, medical systems, data-centric 

systems, and closed-loop types of systems. All of these 
models were built with the modeling tool IBM 
Rational Rose™. Their level of consistency was also 
diverse – between 2-26% with an average of 8.4%.  

 

11
8

28
4

53
3

62
0

62
4

78
1

83
0

83
8

10
20

11
31

11
89

12
00

15
86

16
89

18
32

18
73

21
77

22
42

28
40

29
74

33
52

33
91

35
81

36
63

38
18

43
56

46
86

49
86

67
87

74
79

76
97

23
50

1
31

41
6

48
41

3
71

17
6

79
21

8
10

13
72

10
13

74
12

04
88

model size

0
1
2
3
4
5
6
7
8
9 Generated Choices

Reduced Choices

 
Figure 9. Generated Choices and Reduced Choices 

 

In this study, we looked at 14 types of locations. 
These 14 types of locations adequately covered many 
interesting places for fixing inconsistencies though this 
study cannot be considered exhaustive because the 
UML meta model is much larger. We then defined 14 
choice generator functions to cover the 14 types of 
locations. In the 39 models, these 14 types of locations 
occurred 65,379 times. We then proceeded in 
exhaustingly computing the choices for fixing all these 
locations.  Figure 9 depicts the number of choices 
generated by our approach. It was surprising to find 
that in average only 2.4 valid choices (with a worst 
case of 69 choices) were found for fixing a location. 
Moreover, the number of choices for fixing 
inconsistencies did not increase with the size of the 
model. Both observations are beneficial for usability 
because the user is not overwhelmed with a large 
number of valid choices. Our approach also proved to 
be highly scalable in terms of performance. In average, 
the choice generation and reduction required only 
11ms per location on a 2.2GHz Pentium Processor. 
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Through our previous work [9], we already knew 
that there are in average few locations were to fix any 



given inconsistency. For the 39 models and 24 
consistency rules included in this study, there were in 
average 10.4 such locations per inconsistency (Figure 
10). Therefore, the total number of choices for fixing 
an inconsistency was in average 10.4 locations * 2.4 
choices per location ≈ 25 choices. 

While [9] was able to identify all locations, the list 
did contain false positives. A false location is a 
location for which no valid choice exists. Such false 
locations are not uncommon as indicated in Figure 10 
through a vertical error bar. In average, 11.2% of all 
locations suggested in [9] were false. This fact was 
recognized in that paper. This paper also eliminates 
this drawback. By exploring choices, we are now able 
to automatically detect these false locations. Of the 
remaining, valid locations, roughly 48% had multiple 
valid choices whereas 40% had only a single valid 
choice. This observation might prove useful in future 
work since locations with single choices suggest the 
possibility of auto-correction. 

Our approach does not suggest false choices (i.e., 
false positives) because we are able to identify all 
consistency rules affected by a fix automatically. 
However, since writing the choice generator involves 
manual overhead, our approach may miss valid choices 
if the choice generator does not find them. It is 
therefore important to design the choice generator 
well. Fortunately, choice generator functions are 
generic and can be used across domains and 
applications. Moreover, the cost of writing them is 
small in comparison to fixing rules. Note that instead 
of manually writing O(#type of consistency rules * 
#types of locations) fixing rules, our approach only 
requires O(#types of locations) choice generate rules – 
a significant savings.  

 

6. Threads to Validity 
 

This study was based on 39 small-to-large UML 
models covering a wide range of domains and 
originating from a diverse set of designers. The 24 
types of consistency rules were representative of 
consistency rules found in industry. The 14 types of 
locations were typical locations for fixing 
inconsistencies. Since the 24 types of consistency rules 
were instantiated over 223,000 times and the 14 types 
of location occurred over 65,000 times in the 39 UML 
models, we are confident that our findings are accurate 
with respect to the rules and locations used.  

However, there are many other types of consistency 
rules and many more types of locations. Only 17% of 
all relevant locations were evaluated in this case study. 
Of the remaining locations, 4% were deemed 
unchangeable (i.e., we believe that they should never 

be changed) and the rest were simply undefined. This 
leaves a large pool of uncertainty and thus we cannot 
generalize that every location will be scalable or 
useable. Yet, given that our findings are highly 
encouraging, we believe that our approach would scale 
with respect to many other consistency rules and 
locations as well.  

Another limitation of this work is its restriction to 
single changes. While this work allows the designer to 
explore the different choices for fixing inconsistencies, 
even among multiple locations, these choices are 
mutually exclusive (i.e., every choice is considered 
separate). Yet, there are cases where adequately fixing 
an inconsistency may involve several concurrent 
changes – where each change may not resolve all 
inconsistencies or may even temporarily introduce new 
ones, before reaching a consistent state. So, this work 
cannot be considered a complete solution to the 
problem of fixing inconsistencies.  

Finally, this work generated choices solely from the 
pool of existing model elements. This approach thus 
did not consider the creation of new model elements to 
fixing inconsistencies. This problem is in fact related 
to the earlier point of restricting to single changes 
since the creation of new model elements would 
typically involve multiple concurrent changes.  

 
7. Related Work 
 

This work in essence explores trade-offs among 
design decisions. In Section 2, we already outlined the 
differences to our extensive previous work [5-9]. In the 
following, we discuss other relevant work.  

A very significant problem is reasoning about 
inconsistencies that are the result of conflicts among 
multiple stakeholders – often referred to as viewpoints.  
For example, [11] and [12] define techniques for 
reasoning formally over multiple models despite the 
presence of logical inconsistencies. [13] defines a 
technique for merging conceptual models and 
detecting inconsistencies over the merged model. 
These techniques focus on handling inconsistencies 
between multiple models expressed in a single 
language, either conceptual models or state machine 
models, and do not explicitly support the generation of 
concrete ways to resolve inconsistencies. In contrast, 
the techniques describe in this paper deal with multi-
paradigm descriptions and aims at providing support 
for transforming the models so as to fix 
inconsistencies. We do not however support the 
merging of different models coming from different 
sources and formal reasoning about the behavioral 
properties of our models. Most of our consistency rules 



are the equivalent of the static semantic rules of 
programming languages. 

While it is important to know about inconsistencies, 
it is often too distracting to resolve them right away. 
The notion of “living with inconsistencies” [4] 
advocates that there is a benefit in allowing 
inconsistencies in design models on a temporary basis. 
While our approach provides fixes for inconsistencies 
instantly, it does not require the engineers to fix 
inconsistencies when they first occur (although it could 
be used that way). Our approach tracks all presently-
known inconsistencies and lets the engineers decide 
when to resolve what inconsistencies.  

Our work is loosely related to the constraint 
satisfaction problem (CSP). CSP deals with the 
combinatorial problem of what choices best satisfy a 
given set of constraints. Since this problem is 
computationally expensive, certain optimizations have 
been developed. In particular, the AC3 optimization 
[14] defines a mapping between choices and the 
constraints they affect. Constraints are only then re-
evaluated if their choices change. We borrowed this 
concept in our use of scopes. A key difference is that 
CSP uses “white-box constraints.” It is thus known, in 
advance, what choices a constraint will encounter. 
Consistency rules in UML typically are black-box 
constraints. This is the why our approach relies on 
model profiling. Since model checkers, such as Alloy 
[15], are built in part on CSP-like technology, they are 
also quite capable of solving the problem in this paper. 
However, since our approach is specifically tailored to 
the problem of fixing inconsistencies in design models, 
it does not suffer from the scalability problems. 

The work of Briand et al. [3] is also relevant to our 
approach because it computes change actions for UML 
models. However, it identifies specific change 
propagation rules for all types of changes. This is 
problematic because there is no guarantee of 
correctness or completeness associated with these 
rules. The work by Robins et al. [16] is similar in that 
it introduces wizards which are defined manually. 
However, it is very hard to enumerate all kinds of 
changes and all their effects [5]. Our approach does 
not require such annotations.  

An area that seems related to fixing inconsistencies 
is that of repairing data structures in databases or code. 
In particular, the assertion-based approach in [17] 
appears similar since there faults in data structures are 
repaired through constraint-based reasoning which is 
not unlike consistency rules. However, their approach 
applies to code and does not take under consideration 
multi-paradigm modeling. Also, their approach applies 
only to the fixing of faults that are simple enough for 

automated approaches to not only identify the choices 
for fixing it but also selecting the most suitable one. 

It must be emphasized that dealing with choices in 
design models is about more than just reducing 
infeasible choices. Outside the scope of this paper 
were thus other aspects of fixing inconsistencies, such 
as keeping a formal history of the choices [18] for later 
maintenance, using version control and rollback 
mechanisms [19], recording why each alternative is 
rejected [20], managing the problem-domain 
dependencies among the decisions [21], decentralized 
consistency [22] and consistency checking among 
different languages [23]. However, it is easy to see that 
all these areas affect the fixing of inconsistencies and 
future work will explore these and other issues. 

 
8. Conclusions 
 

We have developed tool support allowing UML 
modelers to systematically explore alternative ways of 
fixing inconsistencies at different locations in the 
model (some of which may not be obvious) and 
anticipate the impact of such changes on all 
consistency rules simultaneously. Our technique can 
only generate fixes to inconsistencies whose resolution 
does not require the designer to introduce new model 
elements or new names. The latter case could however 
be partially handled by defining default name 
generation mechanisms in the value generator for some 
location type (for example, generating default names 
for roles in an association).  

More importantly, our technique can only generate 
resolutions that involve change in a single location at 
a time. Frequently, resolving an inconsistency involves 
changing multiple model elements simultaneously. For 
example, fixing an inconsistent message name in a 
message sequence chart may involve changing a 
method name in a class diagram and several transitions 
in a sequence diagram. We plan on addressing this 
problem by developing an adequate set of higher-level 
model evolution operators [24] that aggregates the 
application of the elementary changes we have 
considered so far and correspond to frequently needed 
model transformation steps. 

 The approach described here on UML models can 
be transferred to other meta-models and consistency 
rules. In future work, we wish to develop a generic 
meta-tool that would allow tool developers to 
automatically instantiate our techniques for identifying 
and resolving inconsistencies to any meta-model.  In 
particular, we envision enriching the XML-based 
techniques of xlinkit to MOF-based meta-model 
descriptions. 
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